
Abduction and Logic Programming

Noam Zeitoun
zeitoun.noam@gmail.com

Abstract

Abduction is a form of reasoning aimed at obtaining explanations for obser-
vations under a given theory. We summarize how abduction can be modeled
by deduction for the case where the theory is a logic program. A framework
that accommodates a wide range of abduction problems in view of different ap-
plication domains by varying semantics of inference towards the explanation is
used and described. Abduction can also be modeled by argumentation, which
is closely related to logic programming. A correspondence is explored.

1 Introduction

Abduction, next to deduction and induction, is a form of logical reasoning where,
given a theory and some observations, the goal is to find an explanation for the
observations under the theory. It is a very intuitive reasoning task, carried out by the
human mind in a continuous fashion, which somehow relates to what one might call
“common sense”.

This work is motivated by the fascination that abduction can be modeled by
deduction and an interest in logic programming. It aims to establish links between
three works that take different approaches to abduction:

Abduction via Deduction In Section 1.1 we revisit logical reasoning and estab-
lish an intuition for the three aforementioned forms of reasoning using short
examples in order to explain how Console et al. [4] achieve abduction through
deduction in Section 3.

A Framework for Abduction Problems While Eiter et al. [7] were mainly inter-
ested in surveying the complexity and discovering mappings between different
abduction problems, they defined a versatile framework to talk about abduc-
tion problems as logic programs under given semantics. In Section 1.2 logic
programming (as a form of declarative programming) is informally described
and very briefly contrasted with imperative programming, which is much more
widespread in application. A more formal perspective on logic programs is given
in Section 2.1, as they are the foundation of Section 4, where said framework
generalizing abduction problems modeled by logic programming is described.

Abduction in Argumentation Abstract argumentation is a more recent notion
that closely relates to logic programming. We will introduce it in Section 1.3,
and give a formal definition of argumentation frameworks in Section 2.2. In
Section 5 we will then explore how Booth et al. [2] model abduction in argu-
mentation, and highlight the connection to logic programming.

1.1 Deduction, Induction and Abduction

We use the work of Peirce [15] to highlight the underlying schema and differences
between three types of reasoning by means of syllogisms1:

1The interested reader may refer to [5] resp. [14] in order to find out more about the philosophical
roots of abduction or Peirce’s Logic in general.

1

mailto:zeitoun.noam@gmail.com

Deduction

Rule. All the beans from this bag are white.
Case. These beans are from this bag.

∴ Result. These beans are white.

Induction

Case. These beans are from this bag.
Result. These beans are white.

∴ Rule. All the beans from this bag are white.

Abduction

Rule. All the beans from this bag are white.
Result. These beans are white.

∴ Case. These beans are from this bag.

The three types of reasoning are obtained by arranging Rule, Case and Result
so that two of them act as premises, concluding the third. Three examples: (1)
Mathematics heavily depend on deduction to derive more explicit knowledge from
basic axioms. (2) Physicists employ experiments and their results to derive the laws of
physics, which can be regarded as induction. (3) A physician uses medical knowledge
to explain the symptoms of her patient, a diagnosis obtained by abduction.

Abduction is of particular interest in the field of artificial intelligence, when it
comes to generating explanations, diagnoses and plans but has also been successfully
applied to speech recognition, vision and learning [4, 7, Introductions].

In the above syllogism showing abduction, the Rule corresponds with certain
knowledge or a theory, while the Result stands for an observation and the Case maps
to an explanation, diagnosis, plan and similar.

It is important to note that abduction might result in multiple explanations and
it is in general not sound, as some explanations (or diagnoses) may turn out false [7].
However, this is only at the meta-level, meaning that the theory can be adjusted to
lead to better results.

1.2 Logic Programming

Logic programming is regarded a very powerful approach to declarative programming.
Rather than an algorithm to solve a problem, the problem itself (and its solution, to
some extent) is described. As a logic program does not define any kind of control
flow, it is not executed directly, like imperative programs, but instead put into a
solver (which in turn is also a program). Similar to how imperative programs are first
written, then (in some cases) interpreted by an interpreter, a logic program is written
and then solutions are obtained by a solver.

Take the Clique problem for example: Given a graph its solution is the set of
all fully connected sub-graphs. Writing an imperative program (be it in Java, C#,
Go or a similar language) to solve Clique is not straightforward, though certainly
a reasonable task for a second-semester computer science student. The student has
to account for the control flow of the program, keep track of the solutions already
obtained, and so forth. Using a non-hosted language she might even have to deal with
allocating and deallocating memory. With logic programming in turn, the task of the
programmer is just to formalize the problem in a way that the solver understands,
which normally turns out to be the easier task.

2

When first looking at the structure of logic programs (see Section 2) the struc-
ture of the rules, essentially implications, appears strikingly similar to the deductive
nature of mathematical logic. This makes logic programming an interesting vehicle
for encoding theories and knowledge in the form of rules. What is not so obvious,
is how these programs can be transformed in such a way that abduction is modeled
deductively, as we will see in Section 3.

For an introduction to and overview of Answer Set Programming, see [8].

1.3 Abstract Argumentation

Abstract argumentation introduced by Dung [6] is an active field of artificial intelli-
gence research. While the field was inspired by the human capability “to understand
new concepts, to perform scientific reasoning, to express, clarify defend their opinions
in their daily lives” through argumentation and dialogue, its core notion of an argu-
mentation framework (see Definition 3) is best understood as a set of arguments that
might conflict with one another. This makes abstract argumentation interesting for
problems where conflict resolution is key.2

Exploiting the simplicity of AFs, many semantics were presented that define how
to compute extensions from an AF and therefore what constitutes a desirable (sub-
)set of arguments. These semantics are competing in some sense and inspire new
lines of research. Identifying classes of semantics, i.e. using pairwise agreement on
solutions between semantics and other relations, is also active research.

Also, Dung [6] argues that “many major approaches to nonmonotonic reasoning
in AI and logic programming are in fact different forms of [abstract argumentation]”
[6, Introduction, p. 325]. Through this connection we will look at how abduction from
logic programming fits into the paradigm of argumentation frameworks as laid out by
Booth et al. [2].

2 Preliminaries

We briefly revisit logic programs, as they are fundamental to both [4] and [7].

2.1 Logic Programs

Definition 1 (see [18, Slide 15]). A rule is an ordered pair of the form

a1 ∨ . . . ∨ am ← b1 ∧ . . . ∧ bk ∧ not bk+1 ∧ . . . ∧ not bn

where a1, . . . , am, b1, . . . , bn are literals, not is negation as failure (or default nega-
tion), a1 ∨ . . . ∨ am is the head of r and b1, . . . , bk,not bk+1, . . . ,not bn is the body
of r.

Some more concrete classes of rules are of interest: A rule is a fact if n = 0
and m ≥ 1; basic if n = k and m ≥ 1; non-disjunctive if m = 1; normal if it is
non-disjunctive and contains no strong negation ¬; Horn if it is normal and basic;
ground if all its literals are ground.

Definition 2. A logic program (usually denoted LP) is a finite set of rules. Analogous
to the classification of a rule, a program is basic, normal, Horn etc. if all of its rules
are.

2For an introductory lecture refer to [1].

3

When evaluating logic programs, there is no canonical semantics, especially con-
sidering incomplete information and default negation. Two possible approaches are
described in Section 4, as the core idea of the framework in [7] is varying semantics
for inference.

2.2 Argumentation Frameworks

In Section 1.3 we will build upon the notion of argumentation frameworks (AF).

Definition 3 (originally [6, Definition 2], taken from [2, Definition 1]). Given a
countable infinite set U called the universe of arguments, an argumentation framework
(AF) is a pair F = (A,⇝) where A is a finite subset of U and ⇝ a binary relation
over A. If a ⇝ b we say that a attacks b. F denotes the set of all argumentation
frameworks.

3 Abduction via Deduction

From the above introduction, abduction and deduction seem to be distinct and it
is not obvious how abduction can be implemented or programmed. It is however
possible to derive the conclusions of abduction deductively.

The “fundamental result” of [4] is “highlighting the bridge between abduction and
deduction through the completion semantics”. We will use this section of the paper
to familiarize ourselves with their result. In order to resemble the main theorem, we
import Clark completion [3] as well as one meta-level and one object-level definition
of abduction problems.

Let us consider the concrete example ([13, p. 371] as cited in [4, p. 663]) of a
simple interpretation problem represented by the following domain theory LP1:

T1 = { grass is wet← rained last night,

grass is wet← sprinkler was on,

grass is cold and shiny ← grass is wet,

shoes are wet← grass is wet }

Now, assume that we want to obtain an explanation for our manifestation M1 ≡
grass is cold and shiny, that is we ask ourselves: ”Why might the grass be shiny?”
Intuitively, we will look at the theory and try to to follow implications from consequent
to antecedent (resp. left to right), starting at the observation and leading to the two
atoms rained last night and sprinkler was on. Indeed, in this case, the two atoms
coincide with the two minimal explanations of M1:

S1 ={rained last night}
S2 ={sprinkler was on}

More generally, we firstly notice that the only “sensible” explanations (or hypotheses)
for our observation are the atoms that are reached last when intuitively following
implications from consequent to antecedent: The set of atoms that do not occur in
the head of any rule of the theory are called abducible atoms (terminology from [9]
as cited in [4, p. 664]). Secondly, to reach a formal definition of the intuition, Clark
completion [3], a transformation that allows (again, intuitively) following implications
of the theory in reverse is applied.

The completion of non-abducible predicates of a theory LP , denoted LPC is
formally defined in [4] as follows: The completion LPC is a set of equivalences

4

{pi ↔ Di|i = 1, . . . , n}, where p1, . . . pn are all the non-abdicuble atoms in LP and
Di ≡ Qi1 ∨ . . . ∨ Qim in case {Qij → pi|j = 1, . . . ,m} is the set of clauses in LP
having pi as their head. Applying this transformation to our example leads to:

LP1,C = { grass is wet↔ rained last night ∨ sprinkler was on,

grass is cold and shiny ↔ grass is wet,

shoes are wet↔ grass is wet }

Moreover, we require the theory LP to be hierarchical, meaning that it is possible to
assign a rank to every atom such that for every rule in the theory the rank of the
atoms in the head is strictly higher than the rank associated with any atom in the
body of the rule. Practically this means that a directed graph where vertices map to
atoms and edges map to body/head relationship in a rule is acyclic. The assumption
is needed to show the termination of a procedure traversing the rules in a similar
manner as above. Notice that abducible atoms will be of the lowest rank, and the
strict order implies termination. [4, cf. Section 3, p. 667, 669]

Now that we have an intuition for what an abduction problem consists, a sense of
what to expect as an explanation, and a rough idea of a transformation that will help
generating the explanation, we go ahead with a definition of an abduction problem.
Here, we use the more general definition from the framework postulated in [7].

Definition 4 ([7, Definition 1, p. 140]). Let V be a set of propositional atoms. A logic
programming abduction problem (LPAP) P over V consists of a tuple ⟨H,M,LP, |=⟩
where H ⊆ V is a finite set of hypotheses, M ⊆ V ∪ {¬v|v ∈ V } is a finite set
of manifestations, LP is a propositional logic program on V and |= is an inference
operator.

Console et al. [4] additionally require LP to be hierarchical.
With this, the next immediate question is how explanations can be characterized.

A meta-level definition is presented first, and an object-level definition presented
second.

Definition 5. Let P = ⟨H,M,LP, |=⟩ be a LPAP, and let S ⊆ H, then S is a
solution (or m-explanation) to (resp. for) P iff LP ∪ S |= M . The set of solutions
of P is denoted Sol(P).

Remark 1. Two comments on the differences between the definition of an m-ex-
planation in [4, Definition 3, p. 671] and a solution in [7, Definition 2, p. 140]
for clarity: Console et al. [4] restrict the reference operator to ⊢NF , the SLDNF
derivation, i.e. the query evaluation procedure from [3], while Eiter et al. [7] were
interested in a more general framework for arbitrary inference relations (elaborated in
Section 4). Notation also slightly differs, as observations, called manifestations, are
denoted Ψ and solutions, called m-explanations, are denoted E in [4].

Definition 6 (adapted from [4, Definition 2, p. 669]). Let P = ⟨H,M,LP,⊢NF ⟩ be a
be a LPAP using SLDNF derivation and LPC the (Clark) completion of non-abducible
predicates in LP . The explanation formula for P is the most specific formula F in
the language of abducible atoms such that:

LPC ,M |= F

where F is more specific than F ′ iff |= F → F ′.

5

With this, a procedure to compute an explanation formula F is described in [4],
that produces F from LPC by substituting non-abducible atoms pi with their Di

counterpart from the completion until only abducible atoms are present. They argue
that this procedure halts on the grounds that LP is assumed to be hierarchical. That
the sketched procedure indeed results in F is shown in [4, Theorem 1].

A correspondence between the object-level and meta-level definition of explana-
tions for abduction problems, resembles the connection between deduction on the
object level and abduction on the meta-level.

Theorem 1 (adapted from [4, Theorem 2, p. 671]). Let P = ⟨H,M,LP,⊢NF ⟩ be a
be a LPAP using SLDNF derivation having F as the explanation formula. Let S be a
set of abducible atoms and I an interpretation such that for every abducible atom α

I |= α iff α ∈ S

Then S is a solution (an m-explanation) iff S |= F .

Proof of Theorem 1 is omitted for brevity.
Further Console et al. [4] describe how above definitions can be extended to

account for dependence between abducible atoms (additional knowledge about ab-
ducibles). They account for two types:

• taxonomic or abstraction relationships between abducible atoms, i.e. implica-
tions of the form

α→ β

(where α and β are abducible atoms);

• constraints between abducible atoms in the form of denials, i.e. of the form

¬(α1 ∧ . . . ∧ αn)

where αi, . . . , αn are abducible atoms.

Again, transformations on the object level are described [4, Section 4.1], and corre-
spondence with the meta-level [4, Section 4.2] is shown.

Lastly, they provide an extension to the first order case that stems on an “equality
theory included in the completion” [4, Section 5.1, p. 684].

4 A Framework for Abduction Problems

Eiter et al. [7] formulated a general framework for abduction problems allowing varia-
tion in the semantics of inference and compared the complexity of common semantics.

The flexibility of their framework is evident in Definition 4, which was already
used in the previous section, as it allows for an arbitrary inference operator. They
justify this by explaining that different semantics may be needed depending on the
application domain.

Briefly, they think that |=wf , |=b
st, |=c

st are of interest, defined as follows:

Definition 7 (see [11, Section 2]). Given a logic program LP and an interpretation
I, the Gelfond-Lifschitz transform of LP with respect to I, denoted LP I is defined as
follows:

LP I = {a1 ∨ . . . ∨ am ← b1, . . . , bk |
a1 ∨ . . . ∨ am ← b1, . . . , bk,not bk+1, . . . ,not bn ∈ LP

and {bk+1, . . . , bn} ∩M = ∅}

6

Note that if LP is non-disjunctive, then LP I is a Horn program.

Definition 8. Every Horn program P has a least model lm(P). Given a logic program
LP and an interpretation I, I is called a stable model iff I = lm(LP I). The collection
of all stable models of LP is denoted by STM(LP) = {I|I = lm(LP I)}.

Definition 9 ([7, p. 137]). Brave reasoning (or credulous reasoning) infers that a
literal Q is true in LP (denoted LP |=b

st Q) iff Q is true with respect to M for some
M ∈ STM(LP).

Definition 10 ([7, p. 137]). Cautious reasoning (or skeptical reasoning) infers that
a literal Q is true in LP (denoted LP |=b

st Q) iff (1) Q is true with respect to M for
all M ∈ STM(LP) and (2) STM(LP) ̸= ∅.

The well-founded semantics described by Gelder et al. [10] represent a progression
from Clark completion [10, Section 1.1], discussed in Section 3. It involves three-
valued models (adding ⊥ as a “third, unknown truth value” to true and false) and so
called unfounded sets. A definition is omitted in this work for brevity and to avoid
complexity. The most important takeaway is that the well-founded semantics infers
that a literal Q is true in LP , denoted LP |=wf Q, iff it is true in the well-founded
model, and that there is at most one such model (unlike with stable semantics, where
there might be multiple stable models).

It is interesting to note here that in the choice of single model (⊢NF as in Prolog,
and |=wf) vs. multiple model semantics (stable models in Answer Set Programming,
and |=b

st, |=c
st based on multiple models) for inference lies the reason for what is

sometimes referred to as the Great Logic Programming Schism [17, Section 3, p. 13].
In [7] three important decision problems are highlighted: Given an LPAP P =

⟨H,M,LP, |=⟩,

1. does there exist a solution for P? (consistency),

2. is a given hypothesis h ∈ H relevant for P, i.e., does h contribute to some
solution of P? (relevance),

3. is a given hypothesis h ∈ H necessary for P, i.e., is h contained in all solutions
of P? (necessity).

They then continue to prove the complexity of solution verification (S ∈ Sol(P)),
consistency checking (Sol(P) ̸= ∅) and ⪯-relevance, -necessity of some h ∈ H for
LPAPs and disjunctive LPAPs (LP disjunctive, see Definition 2) where preference ⪯
is either minimality with respect to inclusion (⊆), cardinality (≤) or no preference
(=) along all three inference operators |=wf , |=b

st, |=c
st. The results are that these

problems are complete in the lower end of the polynomial hierarchy (∆P
2 [O(log(n)] to

ΣP
4), and allow for some interesting transformations between abduction problems of

different semantics.

5 Abduction in Argumentation

In this section we will take a closer look at the work of Booth et al. [2], which ex-
panding on the definition of an argumentation framework (AF), introduces abductive
argumentation frameworks (AAF).

First, given an AF F = (A,⇝) we need to recognize how abduction can be ex-
pressed: An observation maps to a set of arguments X ⊆ A, “that each individually
supports the observation” [2, p. 118] and the goal is finding an explanation, argumen-
tation framework G that supports X.

7

Remark 2. In the work of Booth et al. [2] there is no clear distinction of Rule (the-
ory), Result (observation) and Case (explanation) (referring to the syllogisms from
Section 1.1). Theory (which seems to be entangled with the observation) and expla-
nation both are AFs while the observation is a set of arguments, but the connection is
not clearly explained. Further, it is unclear what “supports the observation” means.
They define an AF supporting an observation, but not an argument supporting an
observation.

In analogy to |=c
st and |=b

st, Booth et al. [2] define skeptical and credulous support
of an observation, based on the complete semantics.

Definition 11 ([2, Defintion 2]). Let F = (A,⇝). An extension of F is a set E ⊆ A.
An extension E is conflict-free iff for no a, b ∈ E it holds that a ⇝ b. An argument
a ∈ A is defended by E iff for all b such that b⇝ a there is a c ∈ E such that c⇝ b.
Given an extension E, we define DefF (E) by DefF (E) = {a ∈ A | E defends a}.
An extension E is admissible iff E is conflict-free and E ⊆ DefF (E), and complete
iff E is conflict-free and E = DefF (E). The set of complete extensions of F will be
denoted by Co(F). Furthermore, the grounded extension (denoted by Gr(F)) is the
unique ⊆-minimal complete extension of F .

Definition 12. Given an AF F = (A,⇝), an observation X ⊆ A is skeptically (resp.
credulously) supported iff for all (resp. some) E ∈ Co(F) it holds that x ∈ E for some
x ∈ X.

Now it might be the case that an AF F does not skeptically or credulously support
an observation X. In this case, the goal is to find a new AF G that in turn supports
X. We arrive at the definition of an abductive argumentation framework.

Definition 13. An abductive argumentation framework is a pair M = (F, I) where
F is an argumentation framework and and I ⊆ F a set of argumentation frameworks
called abducible such that F ∈ I.

As expected, an AAF M = (F, I) skeptically (resp. credulously) explains an ob-
servation X if any G ∈ I skeptically (resp. credulously) supports X. We continue to
highlight the connection between F and G ∈ I through logic programming.

For correspondence between AAFs and logic programs Booth et al. [2] rely on
results by Wu et al. [19], whereby “a logic program LP over V can be transformed
into an AF F such that the consequences of P under the partial stable semantics3 can
be computed by looking at the complete extensions of F . The idea is that an argument
consists of a conclusion C ∈ V , a set of rules R ⊆ LP used to derive C and a set
N ⊆ V of atoms that must be underivable in order for the argument to be acceptable”
(quoting from [2], edited for the same notation as in Sections 3 and 4). Such a triple
(C,R,N) represents an instantiated argument which is said to be generated4 from
LP and the set of arguments generated by LP is denoted ALP . The attack relation
generated by LP , denoted ⇝LP , is defined by (C,R,N) ⇝LP (C ′, R′, N ′). With
this we have the established the link between AFs and logic programming: For a logic
program LP over V , an atom C ∈ V is a skeptical (resp. credulous) consequence of LP
iff some (C,R,N) ∈ ALP is skeptically (resp. credulously) accepted in (ALP ,⇝LP).

In the instantiated setting by Booth et al. [2] the definition of a hypothesis with
respect to a logic program LP over V differs from hypotheses as per Definition 4

3Note that according to Przymusinski [16] this semantics coincides with the well-founded seman-
tics that is part of the survey in [7] and very briefly mentioned in Section 4.

4A formal definition of a logic program generating an instantiated argument is omitted for brevity.
See [2, Definition 13]

8

(and therefore from the framework defined by Eiter et al. [7]): Now we look at pairs
(∆+,∆−) where ∆+ and ∆− are sets of abducibles (which in turn are in V). ∆+

means added abducibles and complements the removed abducibles denoted ∆−. Thus
a hypothesis skeptically (resp. credulously) explains a query Q ∈ V iff Q is a skeptical
(resp. credulous) consequence of (LP ∪ ∆+) \ ∆−. With this we can explain the
connection between F and G ∈ I for an AAF F = (G, I).

Definition 14 ([2, Definition 16] edited for the same notations as in Sections 3 and 4).
Given a logic program LP over V and a hypothesis (∆+,∆−), we denote by F(∆+,∆−)

the AF (A(LP∪∆+)\∆− ,⇝(LP∪∆+)\∆−). The AAF generated by LP is denoted by
MLP and defined by MLP = ((ALP ,⇝LP), ILP), where ILP = {F(∆+,∆−) | ∆+,∆− ⊆
V,∆+ ∩∆− = ∅}.

Booth et al. [2] conclude that their model of abduction in argumentation is an
abstraction of abductive logic programming.

6 Conclusion

While the main motivation of this work was the fascination for abduction, i.e. how a
computer might attempt common-sense reasoning, a goal was also to deepen under-
standing of logic programming and to get behind how it can implement abduction.
This fits a bigger picture towards combining symbolic (knowledge representation via
logic programming) and non-symbolic perspectives (neural networks) on artificial in-
telligence, which we regard as an important field of research in the coming years.

6.1 Summary

Concerning the three preceding sections, key take-aways are that (1) abduction from
logic programs, while this problem appears so intangible at first, can mapped to de-
duction in a straightforward manner, (2) complexities of important decision problems
arising from abduction reside within the polynomial hierarchy, with interesting map-
pings between them, and (3) unsurprisingly argumentation can generalize abduction
with a strong connection to logic programming.

We made an effort to introduce abduction, induction and deduction by example,
in order to juxtapose abduction and deduction in Section 3. The connection between
Section 3 and Section 4 is explicit in that we used the framework described in the
latter for our definition and reasoning in the former. Further, the connection between
Section 4 and Section 5 is twofold: (1) The notion of credulous and skeptical accep-
tance of an argument, and the truth of an atom under the credulous and skeptical
semantics are strikingly familiar. (2) The close link between logic programs and ar-
gumentation frameworks (that even was highlighted in the initial work by Dung [6])
invites to reason about AAFs inside the framework defined by Eiter et al. [7].

6.2 Open Questions

The question on how logic programs generating AAFs (the result from Wu et al. [19]
as discussed in Section 5) can be integrated into the framework by Eiter et al. [7]
remains open: How can hypotheses of the form (∆+,∆−) (with ∆+,∆− ⊆ V) on the
one side be mapped to hypotheses of the form H ⊆ V on the other side, where V is
the set of atoms?

9

Also, the explanation dialogues detailed in [2, Section 4] were not touched on in
this work. They constitute an interesting variant of dialogical proof using hypothetical
moves, however the connection to logic programming is not straightforward.

References

[1] P. Baroni. An Introduction to Abstract Argumentation. http:

//www.epcl-study.eu/content/downloads/slides/baroni_2013_abstract_

argumentation.pdf.

[2] R. Booth, D. M. Gabbay, S. Kaci, T. Rienstra, and L. W. N. van der Torre.
Abduction and dialogical proof in argumentation and logic programming. In
T. Schaub, G. Friedrich, and B. O’Sullivan, editors, ECAI 2014 - 21st European
Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic
- Including Prestigious Applications of Intelligent Systems (PAIS 2014), volume
263 of Frontiers in Artificial Intelligence and Applications, pages 117–122. IOS
Press, 2014. ISBN 978-1-61499-418-3. doi: 10.3233/978-1-61499-419-0-117. URL
http://dx.doi.org/10.3233/978-1-61499-419-0-117.

[3] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, Symposium on Logic and Data Bases, Centre d’études et de
recherches de Toulouse, 1977., Advances in Data Base Theory, pages 293–322,
New York, 1977. Plemum Press. ISBN 0-306-40060-X.

[4] L. Console, D. T. Dupré, and P. Torasso. On the relationship between abduction
and deduction. J. Log. Comput., 1(5):661–690, 1991. doi: 10.1093/logcom/1.5.
661. URL http://dx.doi.org/10.1093/logcom/1.5.661.

[5] I. Douven. Abduction. In E. N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, winter 2016
edition, 2016. https://plato.stanford.edu/archives/win2016/entries/

abduction/.

[6] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–358, 1995. doi: 10.1016/0004-3702(94)00041-X. URL https://doi.

org/10.1016/0004-3702(94)00041-X.

[7] T. Eiter, G. Gottlob, and N. Leone. Abduction from logic programs: Semantics
and complexity. Theor. Comput. Sci., 189(1-2):129–177, 1997. doi: 10.1016/
S0304-3975(96)00179-X. URL http://dx.doi.org/10.1016/S0304-3975(96)

00179-X.

[8] T. Eiter, G. Ianni, and T. Krennwallner. Answer set programming: A
primer. In Tessaris et al. [17], pages 40–110. ISBN 978-3-642-03753-
5. doi: 10.1007/978-3-642-03754-2 2. URL http://dx.doi.org/10.1007/

978-3-642-03754-2_2.

[9] K. Eshghi. Abductive planning with event calculus. In Kowalski and Bowen [12],
pages 562–579. ISBN 0-262-61056-6.

[10] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. J. ACM, 38(3):620–650, 1991. doi: 10.1145/116825.
116838. URL http://doi.acm.org/10.1145/116825.116838.

10

http://www.epcl-study.eu/content/downloads/slides/baroni_2013_abstract_argumentation.pdf
http://www.epcl-study.eu/content/downloads/slides/baroni_2013_abstract_argumentation.pdf
http://www.epcl-study.eu/content/downloads/slides/baroni_2013_abstract_argumentation.pdf
http://dx.doi.org/10.3233/978-1-61499-419-0-117
http://dx.doi.org/10.1093/logcom/1.5.661
https://plato.stanford.edu/archives/win2016/entries/abduction/
https://plato.stanford.edu/archives/win2016/entries/abduction/
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/0004-3702(94)00041-X
http://dx.doi.org/10.1016/S0304-3975(96)00179-X
http://dx.doi.org/10.1016/S0304-3975(96)00179-X
http://dx.doi.org/10.1007/978-3-642-03754-2_2
http://dx.doi.org/10.1007/978-3-642-03754-2_2
http://doi.acm.org/10.1145/116825.116838

[11] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Kowalski and Bowen [12], pages 1070–1080. ISBN 0-262-61056-6.

[12] R. A. Kowalski and K. A. Bowen, editors. Logic Programming, Proceedings of
the Fifth International Conference and Symposium, Seattle, Washington, August
15-19, 1988 (2 Volumes), 1988. MIT Press. ISBN 0-262-61056-6.

[13] J. Pearl. Embracing causality in formal reasoning. In K. D. Forbus and H. E.
Shrobe, editors, Proceedings of the 6th National Conference on Artificial Intelli-
gence. Seattle, WA, July 1987., pages 369–373. Morgan Kaufmann, 1987. URL
http://www.aaai.org/Library/AAAI/1987/aaai87-066.php.

[14] C. Peirce and J. Buchler. Philosophical Writings of Peirce. Dover books on
philosophy. Dover Publications, 1940. ISBN 9780486202174. URL https://

books.google.at/books?id=Uq1kDQAAQBAJ.

[15] C. S. Peirce. Illustrations of the Logic of Science VI: Deduction, Induction, and
Hypothesis. The Popular Science Monthly, 13, 1878.

[16] T. C. Przymusinski. The well-founded semantics coincides with the three-valued
stable semantics. Fundam. Inform., 13(4):445–463, 1990.

[17] S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh, M. Rousset, and
R. A. Schmidt, editors. Reasoning Web. Semantic Technologies for Information
Systems, 5th International Summer School 2009, Brixen-Bressanone, Italy, Au-
gust 30 - September 4, 2009, Tutorial Lectures, volume 5689 of Lecture Notes
in Computer Science, 2009. Springer. ISBN 978-3-642-03753-5. doi: 10.1007/
978-3-642-03754-2. URL http://dx.doi.org/10.1007/978-3-642-03754-2.

[18] H. Tompits. Introduction to Knowledge Based Systems: Answer Set Program-
ming. Lecture at Vienna University of Technology, 2016.

[19] Y. Wu, M. Caminada, and D. M. Gabbay. Complete extensions in argumentation
coincide with 3-valued stable models in logic programming. Studia Logica, 93(2-
3):383–403, 2009. doi: 10.1007/s11225-009-9210-5. URL https://doi.org/10.

1007/s11225-009-9210-5.

11

http://www.aaai.org/Library/AAAI/1987/aaai87-066.php
https://books.google.at/books?id=Uq1kDQAAQBAJ
https://books.google.at/books?id=Uq1kDQAAQBAJ
http://dx.doi.org/10.1007/978-3-642-03754-2
https://doi.org/10.1007/s11225-009-9210-5
https://doi.org/10.1007/s11225-009-9210-5

	Introduction
	Deduction, Induction and Abduction
	Logic Programming
	Abstract Argumentation

	Preliminaries
	Logic Programs
	Argumentation Frameworks

	Abduction via Deduction
	A Framework for Abduction Problems
	Abduction in Argumentation
	Conclusion
	Summary
	Open Questions

